Universal Learning over Related Distributions and Adaptive Graph Transduction
نویسندگان
چکیده
The basis assumption that “training and test data drawn from the same distribution” is often violated in reality. In this paper, we propose one common solution to cover various scenarios of learning under “different but related distributions” in a single framework. Explicit examples include (a) sample selection bias between training and testing data, (b) transfer learning or no labeled data in target domain, and (c) noisy or uncertain training data. The main motivation is that one could ideally solve as many problems as possible with a single approach. The proposed solution extends graph transduction using the maximum margin principle over unlabeled data. The error of the proposed method is bounded under reasonable assumptions even when the training and testing distributions are different. Experiment results demonstrate that the proposed method improves the traditional graph transduction by as much as 15% in accuracy and AUC in all common situations of distribution difference. Most importantly, it outperforms, by up to 10% in accuracy, several state-of-art approaches proposed to solve specific category of distribution difference, i.e, BRSD [1] for sample selection bias, CDSC [2] for transfer learning, etc. The main claim is that the adaptive graph transduction is a general and competitive method to solve distribution differences implicitly without knowing and worrying about the exact type. These at least include sample selection bias, transfer learning, uncertainty mining, as well as those alike that are still not studied yet. The source code and datasets are available from the authors.
منابع مشابه
The Time Adaptive Self Organizing Map for Distribution Estimation
The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...
متن کاملQuantifier-free definable graph operations preserving recognizability
We show that an operation on graphs, and more generally, on relational structures that has an inverse definable by a monadic secondorder transduction preserves the family of recognizable sets.
متن کاملOn the effect of low-quality node observation on learning over incremental adaptive networks
In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....
متن کاملDistribution Matching for Transduction
Many transductive inference algorithms assume that distributions over training and test estimates should be related, e.g. by providing a large margin of separation on both sets. We use this idea to design a transduction algorithm which can be used without modification for classification, regression, and structured estimation. At its heart we exploit the fact that for a good learner the distribu...
متن کاملThe generalized total graph of modules respect to proper submodules over commutative rings.
Let $M$ be a module over a commutative ring $R$ and let $N$ be a proper submodule of $M$. The total graph of $M$ over $R$ with respect to $N$, denoted by $T(Gamma_{N}(M))$, have been introduced and studied in [2]. In this paper, A generalization of the total graph $T(Gamma_{N}(M))$, denoted by $T(Gamma_{N,I}(M))$ is presented, where $I$ is an ideal of $R$. It is the graph with all elements of $...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009